pygromos.files.otherfiles package¶
Submodules¶
pygromos.files.otherfiles.new_repdat module¶
FUNCTIONLIB: Repdat File Description:
From a Replica-Exchange simulation a repdat file will be created, that gives insight on the replica exchanges of the simulation
Author: Benjamin Schroeder
- class pygromos.files.otherfiles.new_repdat.Repdat(input_path: str)[source]¶
Bases:
pandas.core.frame.DataFrame
Replica exchange statistic file This class is a representation for all transition information during a replica exchange run. it adds some useful functionality.
- DATA: pandas.core.frame.DataFrame¶
- __init__(input_path: str)[source]¶
Repdat_Constructor
- Parameters
input_path (str) – path to gromos repdadat file
- _caculate_transition_traces() None [source]¶
TODO: refactor code! ..autofunction: _caculate_transition_traces
calculates the transition traces for all replicas from raw data and stores them in self.transition_traces. In the end you recieve the trace a replica coord system moved through s dist format: {replicaID: {[trials…], [position…], [PotE…]}}
- Returns
None
- Return type
None
- _calculate_ndowns_nups_for_each_state(time_stride: int = - 1, min_state_potential_treshold: Optional[float] = None, verbose: bool = False)[source]¶
calculates the visit counts for each replicaID position (Temperature or s_value).
It splits into substates depending on the state potentials, to destinguish which state passed by. Up and Downs are counted from top to bottom. Additionally also a time dependend series is generated. This can be binned by the argument time_window. If the min_state_potential_treshold is given, than a minimal state is also dependent on the other states, if they are below the threshold, the state is undefined.
In the end you recieve the position state visit counts in a dict: format: {{replicaposition:{“tot_nup”:[], “tot_ndown”:[], “dt”:float, “dt_nup”:[], “dt_ndown”:[]}}
- Parameters
time_stride (int, optional) – determines the window bin size of flow trajectory for each replicaID. This there are total_transitions/time_window bins containing time_window many flow values. default -1 counts all frames
min_state_potential_treshold (float, optional) – a threshold, defining if a state is governing a system at a time point t
verbose (bool, optional)
- Return type
None
- _calculate_replica_roundtrips()[source]¶
- ..autofunction: _calculate_replica_roundtrips
This function is calculating the roundtrips over all replica positions for each replica.
- Returns
None
- Return type
None
- _clean_replica_round_trips(replica_round_trips: Dict[int, int]) Dict[int, int] [source]¶
_clean_replica_round_trips - privat
This function cleans up so that the minimal rountrip number in a roundtrip dict is 0
- Parameters
replica_round_trips (Dict[int:int]) – a dictionary containing all replica roundtrip counts
- Returns
Dict[int – a dictionary containing all replica roundtrip counts with lowest value 0
- Return type
int]
- added_property = 1¶
- append(repdat: Union[List[pygromos.utils.typing.Repdat_Type], pygromos.utils.typing.Repdat_Type])[source]¶
This function concatenates two repdat files into the executing obj.
- Parameters
repdat (List[Repdat] or Repdat) – one or multiple Repdat files.
- Return type
None
- clean_file_runs()[source]¶
clean_file DEAPRECEATED - ABOUT TO BE REMOVED!
Updates the run numbers to be continous sequential. (for example needed for concatenation)
- count_state_per_position: Dict[int, Dict[str, Union[List[int], int]]] = None¶
- get_replicaPosition_dependend_nup_ndown(time_window_size: int = - 1, potential_treshold: Optional[float] = None, recalculate: bool = False) Dict[int, Dict[str, Union[List, pandas.core.frame.DataFrame, dict, float]]] [source]¶
- ..autofunction: get_replicaPosition_dependend_nup_ndown
This function is returning the replica position visit counts by all simulation state.
- Parameters
time_window_size (int) – how many timesteps shall be binned
potential_treshold (float) – if defined, and there is a time window, in which multiple states are below this threshold, the count is in an undefined state.
recalculate (bool) – shall the dict be recalculated?
- Returns
returns a dict for all replica positions and the visit counts.
- Return type
Dict[int, Dict[str, Union[List or float]]]
- get_replicaPosition_dependend_nup_ndown_for_each_state(time_window_size: int = - 1, potential_treshold: Optional[float] = None, recalculate: bool = False) Dict[int, Dict[str, List]] [source]¶
- ..autofunction: get_replicaPosition_dependend_nup_ndown_for_each_state
This function is returning the replica position visit counts by each simulation state, per state.
- Parameters
time_window_size (int) – how many timesteps shall be binned
potential_treshold (float) – if defined, and there is a time window, in which multiple states are below this threshold, the count is in an undefined state.
recalculate (bool) – shall the dict be recalculated?
- Returns
returns a dict for all replica positions and their state visit counts.
- Return type
Dict[int, Dict[str, Union[List or float]]]
- get_replica_roundtrips(recalculate: bool = False) Dict[int, int] [source]¶
- ..autofunction: get_replica_roundtrips
This function is returning the count of rountrips (RT) for each replica.
- Parameters
recalculate (bool) – shall the dict be recalculated?
- Returns
returns a dict for all replica and their rountrip counts.
- Return type
Dict[int,int]
- get_replica_traces(recalculate: bool = False) pandas.core.frame.DataFrame [source]¶
returns a replica_traces dictionary. :Parameters: recalculate (bool, optional) – shall the dict be recalculated, if already present?
- Returns
dictionary containing all individual replica_traces
- Return type
Dict[int, Dict[str,List[float]]]
- replica_round_trips: Dict[int, int] = None¶
- transition_traces: Dict[int, Dict[str, List[float]]] = None¶
pygromos.files.otherfiles.noe_output module¶
FUNCTIONLIB: gromos++ input file functions Description:
in this lib, gromosXX input file mainpulating functions are gathered
Author: Benjamin Schroeder
- class pygromos.files.otherfiles.noe_output.JVAL(in_value: str)[source]¶
Bases:
pygromos.files._basics._general_gromos_file._general_gromos_file
- content: pandas.core.frame.DataFrame¶
pygromos.files.otherfiles.repdat module¶
FUNCTIONLIB: Repdat File Description:
From a Replica-Exchange simulation a repdat file will be created, that gives insight on the replica exchanges of the simulation
Author: Benjamin Schroeder
- class pygromos.files.otherfiles.repdat.Repdat(input_path: str)[source]¶
Bases:
pygromos.files._basics._general_gromos_file._general_gromos_file
Replica exchange statistic file This class is a representation for all transition information during a replica exchange run. it adds some useful functionality.
- DATA: pandas.core.frame.DataFrame¶
- __init__(input_path: str)[source]¶
Repdat_Constructor
- Parameters
input_path (str) – path to gromos repdadat file
- _caculate_transition_traces()[source]¶
- calculates the transition traces for all replicas from raw data and stores them in self.transition_traces.
In the end you recieve the trace a replica coord system moved through s dist format: {replicaID: {[trials…], [position…], [PotE…]}}
TODO: refactor code!
- Return type
None
- _calculate_ndowns_nups_for_each_state(time_stride: int = - 1, min_state_potential_treshold: Optional[float] = None, verbose: bool = False)[source]¶
calculates the visit counts for each replicaID position (Temperature or s_value).
It splits into substates depending on the state potentials, to destinguish which state passed by. Up and Downs are counted from top to bottom. Additionally also a time dependend series is generated. This can be binned by the argument time_window. If the min_state_potential_treshold is given, than a minimal state is also dependent on the other states, if they are below the threshold, the state is undefined.
In the end you recieve the position state visit counts in a dict: format: {{replicaposition:{“tot_nup”:[], “tot_ndown”:[], “dt”:float, “dt_nup”:[], “dt_ndown”:[]}}
- Parameters
time_stride (int, optional) – determines the window bin size of flow trajectory for each replicaID. This there are total_transitions/time_window bins containing time_window many flow values. default -1 counts all frames
min_state_potential_treshold (float, optional) – a threshold, defining if a state is governing a system at a time point t
verbose (bool, optional)
- Return type
None
- _calculate_replica_roundtrips()[source]¶
This function is calculating the roundtrips over all replica positions for each replica.
- Return type
None
- _clean_replica_round_trips(replica_round_trips: Dict[int, int]) Dict[int, int] [source]¶
_clean_replica_round_trips - privat
This function cleans up so that the minimal rountrip number in a roundtrip dict is 0
- Parameters
replica_round_trips (Dict[int:int]) – a dictionary containing all replica roundtrip counts
- Returns
Dict[int – a dictionary containing all replica roundtrip counts with lowest value 0
- Return type
int]
- append(repdat: Union[List[pygromos.utils.typing.Repdat_Type], pygromos.utils.typing.Repdat_Type])[source]¶
This function concatenates two repdat files into the executing obj.
- Parameters
repdat (List[Repdat] or Repdat) – one or multiple Repdat files.
- Return type
None
- clean_file_runs(starting_trial: float = 1)[source]¶
- clean_file
Updates the run numbers to be continous sequential. (for example needed for concatenation)
- Parameters
starting_trial (int, optional)
- count_state_per_position: Dict[int, Dict[str, Union[List, float]]] = None¶
- get_replicaPosition_dependend_nup_ndown(time_window_size: int = - 1, potential_treshold: Optional[float] = None, recalculate: bool = False) Dict[int, Dict[str, Union[List, pandas.core.frame.DataFrame, dict, float]]] [source]¶
This function is returning the replica position visit counts by all simulation state.
- Parameters
time_window_size (int,optional) – how many timesteps shall be binned into one bin?
potential_treshold (float) – if defined, and there is a time window, in which multiple states are below this threshold, the count is in an undefined state.
recalculate (bool) – shall the dict be recalculated?
- Returns
returns a dict for all replica positions and the visit counts.
- Return type
Dict[int, Dict[str, Union[List or float]]]
- get_replicaPosition_dependend_nup_ndown_for_each_state(time_window_size: int = - 1, potential_treshold: Optional[float] = None, recalculate: bool = False) Dict[int, Dict[str, Union[List, float]]] [source]¶
This function is returning the replica position visit counts by each simulation state, per state.
- Parameters
time_window_size (int, optional) – how many timesteps shall be binned into one bin?
potential_treshold (float, optional) – if defined, and there is a time window, in which multiple states are below this threshold, the count is in an undefined state.
recalculate (bool, optional) – shall the dict be recalculated?
- Returns
returns a dict for all replica positions and their state visit counts.
- Return type
Dict[int, Dict[str, Union[List or float]]]
- get_replica_roundtrips(recalculate: bool = False) Dict[int, int] [source]¶
This function is returning the count of rountrips (RT) for each replica.
- Parameters
recalculate (bool) – shall the dict be recalculated?
- Returns
returns a dict for all replica and their rountrip counts.
- Return type
Dict[int, int]
- get_replica_traces(recalculate: bool = False) pandas.core.frame.DataFrame [source]¶
returns a replica_traces dictionary. :Parameters: recalculate (bool, optional) – shall the dict be recalculated, if already present?
- Returns
dictionary containing all individual replica_traces
- Return type
Dict[int, Dict[str,List[float]]]
- replica_round_trips: Dict[int, int] = None¶
- transition_traces: Dict[int, Dict[str, List[float]]] = None¶
pygromos.files.otherfiles.residue_library module¶
- File: gromos residue library
needed if top and pdb resns or atoms are not the same.
Author: Benjamin Ries
- class pygromos.files.otherfiles.residue_library.residue_library(in_value: Union[str, Dict] = '/home/mlehner/PyGromosTools/pygromos/data/pdb2g96.lib')[source]¶
Bases:
pygromos.files._basics._general_gromos_file._general_gromos_file
- ATOMNAMELIB: pygromos.files.blocks.miscBlocks.ATOMNAMELIB¶
- RESIDUENAMELIB: pygromos.files.blocks.miscBlocks.RESIDUENAMELIB¶
- __init__(in_value: Union[str, Dict] = '/home/mlehner/PyGromosTools/pygromos/data/pdb2g96.lib')[source]¶
This class represents a file that is used for the gromosPP program - pdb2g96 it contains two blocks for residue naming and atom naming
- Parameters
in_value (Union[str, dict])
- required_blocks = ['TITLE', 'RESIDUENAMELIB', 'ATOMNAMELIB']¶
- verbose: bool = False¶