Source code for sympy.matrices.dense

from __future__ import division, print_function

import random

from sympy.core import SympifyError
from sympy.core.basic import Basic
from sympy.core.compatibility import is_sequence, range, reduce
from sympy.core.expr import Expr
from sympy.core.function import expand_mul
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.matrices.common import \
    a2idx, classof, ShapeError, NonPositiveDefiniteMatrixError
from sympy.matrices.matrices import MatrixBase
from sympy.simplify import simplify as _simplify
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.misc import filldedent


def _iszero(x):
    """Returns True if x is zero."""
    return x.is_zero


def _compare_sequence(a, b):
    """Compares the elements of a list/tuple `a`
    and a list/tuple `b`.  `_compare_sequence((1,2), [1, 2])`
    is True, whereas `(1,2) == [1, 2]` is False"""
    if type(a) is type(b):
        # if they are the same type, compare directly
        return a == b
    # there is no overhead for calling `tuple` on a
    # tuple
    return tuple(a) == tuple(b)

class DenseMatrix(MatrixBase):

    is_MatrixExpr = False

    _op_priority = 10.01
    _class_priority = 4

    def __eq__(self, other):
        other = sympify(other)
        self_shape = getattr(self, 'shape', None)
        other_shape = getattr(other, 'shape', None)
        if None in (self_shape, other_shape):
            return False
        if self_shape != other_shape:
            return False
        if isinstance(other, Matrix):
            return _compare_sequence(self._mat,  other._mat)
        elif isinstance(other, MatrixBase):
            return _compare_sequence(self._mat, Matrix(other)._mat)

    def __getitem__(self, key):
        """Return portion of self defined by key. If the key involves a slice
        then a list will be returned (if key is a single slice) or a matrix
        (if key was a tuple involving a slice).

        Examples
        ========

        >>> from sympy import Matrix, I
        >>> m = Matrix([
        ... [1, 2 + I],
        ... [3, 4    ]])

        If the key is a tuple that doesn't involve a slice then that element
        is returned:

        >>> m[1, 0]
        3

        When a tuple key involves a slice, a matrix is returned. Here, the
        first column is selected (all rows, column 0):

        >>> m[:, 0]
        Matrix([
        [1],
        [3]])

        If the slice is not a tuple then it selects from the underlying
        list of elements that are arranged in row order and a list is
        returned if a slice is involved:

        >>> m[0]
        1
        >>> m[::2]
        [1, 3]
        """
        if isinstance(key, tuple):
            i, j = key
            try:
                i, j = self.key2ij(key)
                return self._mat[i*self.cols + j]
            except (TypeError, IndexError):
                if (isinstance(i, Expr) and not i.is_number) or (isinstance(j, Expr) and not j.is_number):
                    if ((j < 0) is True) or ((j >= self.shape[1]) is True) or\
                       ((i < 0) is True) or ((i >= self.shape[0]) is True):
                        raise ValueError("index out of boundary")
                    from sympy.matrices.expressions.matexpr import MatrixElement
                    return MatrixElement(self, i, j)

                if isinstance(i, slice):
                    # XXX remove list() when PY2 support is dropped
                    i = list(range(self.rows))[i]
                elif is_sequence(i):
                    pass
                else:
                    i = [i]
                if isinstance(j, slice):
                    # XXX remove list() when PY2 support is dropped
                    j = list(range(self.cols))[j]
                elif is_sequence(j):
                    pass
                else:
                    j = [j]
                return self.extract(i, j)
        else:
            # row-wise decomposition of matrix
            if isinstance(key, slice):
                return self._mat[key]
            return self._mat[a2idx(key)]

    def __setitem__(self, key, value):
        raise NotImplementedError()

    def _cholesky(self, hermitian=True):
        """Helper function of cholesky.
        Without the error checks.
        To be used privately.
        Implements the Cholesky-Banachiewicz algorithm.
        Returns L such that L*L.H == self if hermitian flag is True,
        or L*L.T == self if hermitian is False.
        """
        L = zeros(self.rows, self.rows)
        if hermitian:
            for i in range(self.rows):
                for j in range(i):
                    L[i, j] = (1 / L[j, j])*expand_mul(self[i, j] -
                        sum(L[i, k]*L[j, k].conjugate() for k in range(j)))
                Lii2 = expand_mul(self[i, i] -
                    sum(L[i, k]*L[i, k].conjugate() for k in range(i)))
                if Lii2.is_positive is False:
                    raise NonPositiveDefiniteMatrixError(
                        "Matrix must be positive-definite")
                L[i, i] = sqrt(Lii2)
        else:
            for i in range(self.rows):
                for j in range(i):
                    L[i, j] = (1 / L[j, j])*(self[i, j] -
                        sum(L[i, k]*L[j, k] for k in range(j)))
                L[i, i] = sqrt(self[i, i] -
                    sum(L[i, k]**2 for k in range(i)))
        return self._new(L)

    def _eval_add(self, other):
        # we assume both arguments are dense matrices since
        # sparse matrices have a higher priority
        mat = [a + b for a,b in zip(self._mat, other._mat)]
        return classof(self, other)._new(self.rows, self.cols, mat, copy=False)

    def _eval_extract(self, rowsList, colsList):
        mat = self._mat
        cols = self.cols
        indices = (i * cols + j for i in rowsList for j in colsList)
        return self._new(len(rowsList), len(colsList),
                         list(mat[i] for i in indices), copy=False)

    def _eval_matrix_mul(self, other):
        from sympy import Add
        # cache attributes for faster access
        self_cols = self.cols
        other_rows, other_cols = other.rows, other.cols
        other_len = other_rows * other_cols
        new_mat_rows = self.rows
        new_mat_cols = other.cols

        # preallocate the array
        new_mat = [self.zero]*new_mat_rows*new_mat_cols

        # if we multiply an n x 0 with a 0 x m, the
        # expected behavior is to produce an n x m matrix of zeros
        if self.cols != 0 and other.rows != 0:
            # cache self._mat and other._mat for performance
            mat = self._mat
            other_mat = other._mat
            for i in range(len(new_mat)):
                row, col = i // new_mat_cols, i % new_mat_cols
                row_indices = range(self_cols*row, self_cols*(row+1))
                col_indices = range(col, other_len, other_cols)
                vec = (mat[a]*other_mat[b] for a,b in zip(row_indices, col_indices))
                try:
                    new_mat[i] = Add(*vec)
                except (TypeError, SympifyError):
                    # Block matrices don't work with `sum` or `Add` (ISSUE #11599)
                    # They don't work with `sum` because `sum` tries to add `0`
                    # initially, and for a matrix, that is a mix of a scalar and
                    # a matrix, which raises a TypeError. Fall back to a
                    # block-matrix-safe way to multiply if the `sum` fails.
                    vec = (mat[a]*other_mat[b] for a,b in zip(row_indices, col_indices))
                    new_mat[i] = reduce(lambda a,b: a + b, vec)
        return classof(self, other)._new(new_mat_rows, new_mat_cols, new_mat, copy=False)

    def _eval_matrix_mul_elementwise(self, other):
        mat = [a*b for a,b in zip(self._mat, other._mat)]
        return classof(self, other)._new(self.rows, self.cols, mat, copy=False)

    def _eval_inverse(self, **kwargs):
        """Return the matrix inverse using the method indicated (default
        is Gauss elimination).

        kwargs
        ======

        method : ('GE', 'LU', or 'ADJ')
        iszerofunc
        try_block_diag

        Notes
        =====

        According to the ``method`` keyword, it calls the appropriate method:

          GE .... inverse_GE(); default
          LU .... inverse_LU()
          ADJ ... inverse_ADJ()

        According to the ``try_block_diag`` keyword, it will try to form block
        diagonal matrices using the method get_diag_blocks(), invert these
        individually, and then reconstruct the full inverse matrix.

        Note, the GE and LU methods may require the matrix to be simplified
        before it is inverted in order to properly detect zeros during
        pivoting. In difficult cases a custom zero detection function can
        be provided by setting the ``iszerosfunc`` argument to a function that
        should return True if its argument is zero. The ADJ routine computes
        the determinant and uses that to detect singular matrices in addition
        to testing for zeros on the diagonal.

        See Also
        ========

        inverse_LU
        inverse_GE
        inverse_ADJ
        """
        from sympy.matrices import diag

        method = kwargs.get('method', 'GE')
        iszerofunc = kwargs.get('iszerofunc', _iszero)
        if kwargs.get('try_block_diag', False):
            blocks = self.get_diag_blocks()
            r = []
            for block in blocks:
                r.append(block.inv(method=method, iszerofunc=iszerofunc))
            return diag(*r)

        M = self.as_mutable()
        if method == "GE":
            rv = M.inverse_GE(iszerofunc=iszerofunc)
        elif method == "LU":
            rv = M.inverse_LU(iszerofunc=iszerofunc)
        elif method == "ADJ":
            rv = M.inverse_ADJ(iszerofunc=iszerofunc)
        else:
            # make sure to add an invertibility check (as in inverse_LU)
            # if a new method is added.
            raise ValueError("Inversion method unrecognized")
        return self._new(rv)

    def _eval_scalar_mul(self, other):
        mat = [other*a for a in self._mat]
        return self._new(self.rows, self.cols, mat, copy=False)

    def _eval_scalar_rmul(self, other):
        mat = [a*other for a in self._mat]
        return self._new(self.rows, self.cols, mat, copy=False)

    def _eval_tolist(self):
        mat = list(self._mat)
        cols = self.cols
        return [mat[i*cols:(i + 1)*cols] for i in range(self.rows)]

    def _LDLdecomposition(self, hermitian=True):
        """Helper function of LDLdecomposition.
        Without the error checks.
        To be used privately.
        Returns L and D such that L*D*L.H == self if hermitian flag is True,
        or L*D*L.T == self if hermitian is False.
        """
        # https://en.wikipedia.org/wiki/Cholesky_decomposition#LDL_decomposition_2
        D = zeros(self.rows, self.rows)
        L = eye(self.rows)
        if hermitian:
            for i in range(self.rows):
                for j in range(i):
                    L[i, j] = (1 / D[j, j])*expand_mul(self[i, j] - sum(
                        L[i, k]*L[j, k].conjugate()*D[k, k] for k in range(j)))
                D[i, i] = expand_mul(self[i, i] -
                    sum(L[i, k]*L[i, k].conjugate()*D[k, k] for k in range(i)))
                if D[i, i].is_positive is False:
                    raise NonPositiveDefiniteMatrixError(
                        "Matrix must be positive-definite")
        else:
            for i in range(self.rows):
                for j in range(i):
                    L[i, j] = (1 / D[j, j])*(self[i, j] - sum(
                        L[i, k]*L[j, k]*D[k, k] for k in range(j)))
                D[i, i] = self[i, i] - sum(L[i, k]**2*D[k, k] for k in range(i))
        return self._new(L), self._new(D)

    def _lower_triangular_solve(self, rhs):
        """Helper function of function lower_triangular_solve.
        Without the error checks.
        To be used privately.
        """
        X = zeros(self.rows, rhs.cols)
        for j in range(rhs.cols):
            for i in range(self.rows):
                if self[i, i] == 0:
                    raise TypeError("Matrix must be non-singular.")
                X[i, j] = (rhs[i, j] - sum(self[i, k]*X[k, j]
                                           for k in range(i))) / self[i, i]
        return self._new(X)

    def _upper_triangular_solve(self, rhs):
        """Helper function of function upper_triangular_solve.
        Without the error checks, to be used privately. """
        X = zeros(self.rows, rhs.cols)
        for j in range(rhs.cols):
            for i in reversed(range(self.rows)):
                if self[i, i] == 0:
                    raise ValueError("Matrix must be non-singular.")
                X[i, j] = (rhs[i, j] - sum(self[i, k]*X[k, j]
                                           for k in range(i + 1, self.rows))) / self[i, i]
        return self._new(X)

    def as_immutable(self):
        """Returns an Immutable version of this Matrix
        """
        from .immutable import ImmutableDenseMatrix as cls
        if self.rows and self.cols:
            return cls._new(self.tolist())
        return cls._new(self.rows, self.cols, [])

    def as_mutable(self):
        """Returns a mutable version of this matrix

        Examples
        ========

        >>> from sympy import ImmutableMatrix
        >>> X = ImmutableMatrix([[1, 2], [3, 4]])
        >>> Y = X.as_mutable()
        >>> Y[1, 1] = 5 # Can set values in Y
        >>> Y
        Matrix([
        [1, 2],
        [3, 5]])
        """
        return Matrix(self)

    def equals(self, other, failing_expression=False):
        """Applies ``equals`` to corresponding elements of the matrices,
        trying to prove that the elements are equivalent, returning True
        if they are, False if any pair is not, and None (or the first
        failing expression if failing_expression is True) if it cannot
        be decided if the expressions are equivalent or not. This is, in
        general, an expensive operation.

        Examples
        ========

        >>> from sympy.matrices import Matrix
        >>> from sympy.abc import x
        >>> from sympy import cos
        >>> A = Matrix([x*(x - 1), 0])
        >>> B = Matrix([x**2 - x, 0])
        >>> A == B
        False
        >>> A.simplify() == B.simplify()
        True
        >>> A.equals(B)
        True
        >>> A.equals(2)
        False

        See Also
        ========
        sympy.core.expr.Expr.equals
        """
        self_shape = getattr(self, 'shape', None)
        other_shape = getattr(other, 'shape', None)
        if None in (self_shape, other_shape):
            return False
        if self_shape != other_shape:
            return False
        rv = True
        for i in range(self.rows):
            for j in range(self.cols):
                ans = self[i, j].equals(other[i, j], failing_expression)
                if ans is False:
                    return False
                elif ans is not True and rv is True:
                    rv = ans
        return rv


def _force_mutable(x):
    """Return a matrix as a Matrix, otherwise return x."""
    if getattr(x, 'is_Matrix', False):
        return x.as_mutable()
    elif isinstance(x, Basic):
        return x
    elif hasattr(x, '__array__'):
        a = x.__array__()
        if len(a.shape) == 0:
            return sympify(a)
        return Matrix(x)
    return x


class MutableDenseMatrix(DenseMatrix, MatrixBase):
    def __new__(cls, *args, **kwargs):
        return cls._new(*args, **kwargs)

    @classmethod
    def _new(cls, *args, **kwargs):
        # if the `copy` flag is set to False, the input
        # was rows, cols, [list].  It should be used directly
        # without creating a copy.
        if kwargs.get('copy', True) is False:
            if len(args) != 3:
                raise TypeError("'copy=False' requires a matrix be initialized as rows,cols,[list]")
            rows, cols, flat_list = args
        else:
            rows, cols, flat_list = cls._handle_creation_inputs(*args, **kwargs)
            flat_list = list(flat_list) # create a shallow copy
        self = object.__new__(cls)
        self.rows = rows
        self.cols = cols
        self._mat = flat_list
        return self

    def __setitem__(self, key, value):
        """

        Examples
        ========

        >>> from sympy import Matrix, I, zeros, ones
        >>> m = Matrix(((1, 2+I), (3, 4)))
        >>> m
        Matrix([
        [1, 2 + I],
        [3,     4]])
        >>> m[1, 0] = 9
        >>> m
        Matrix([
        [1, 2 + I],
        [9,     4]])
        >>> m[1, 0] = [[0, 1]]

        To replace row r you assign to position r*m where m
        is the number of columns:

        >>> M = zeros(4)
        >>> m = M.cols
        >>> M[3*m] = ones(1, m)*2; M
        Matrix([
        [0, 0, 0, 0],
        [0, 0, 0, 0],
        [0, 0, 0, 0],
        [2, 2, 2, 2]])

        And to replace column c you can assign to position c:

        >>> M[2] = ones(m, 1)*4; M
        Matrix([
        [0, 0, 4, 0],
        [0, 0, 4, 0],
        [0, 0, 4, 0],
        [2, 2, 4, 2]])
        """
        rv = self._setitem(key, value)
        if rv is not None:
            i, j, value = rv
            self._mat[i*self.cols + j] = value

    def as_mutable(self):
        return self.copy()

    def col_del(self, i):
        """Delete the given column.

        Examples
        ========

        >>> from sympy.matrices import eye
        >>> M = eye(3)
        >>> M.col_del(1)
        >>> M
        Matrix([
        [1, 0],
        [0, 0],
        [0, 1]])

        See Also
        ========

        col
        row_del
        """
        if i < -self.cols or i >= self.cols:
            raise IndexError("Index out of range: 'i=%s', valid -%s <= i < %s"
                             % (i, self.cols, self.cols))
        for j in range(self.rows - 1, -1, -1):
            del self._mat[i + j*self.cols]
        self.cols -= 1

    def col_op(self, j, f):
        """In-place operation on col j using two-arg functor whose args are
        interpreted as (self[i, j], i).

        Examples
        ========

        >>> from sympy.matrices import eye
        >>> M = eye(3)
        >>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M
        Matrix([
        [1, 2, 0],
        [0, 1, 0],
        [0, 0, 1]])

        See Also
        ========
        col
        row_op
        """
        self._mat[j::self.cols] = [f(*t) for t in list(zip(self._mat[j::self.cols], list(range(self.rows))))]

    def col_swap(self, i, j):
        """Swap the two given columns of the matrix in-place.

        Examples
        ========

        >>> from sympy.matrices import Matrix
        >>> M = Matrix([[1, 0], [1, 0]])
        >>> M
        Matrix([
        [1, 0],
        [1, 0]])
        >>> M.col_swap(0, 1)
        >>> M
        Matrix([
        [0, 1],
        [0, 1]])

        See Also
        ========

        col
        row_swap
        """
        for k in range(0, self.rows):
            self[k, i], self[k, j] = self[k, j], self[k, i]

    def copyin_list(self, key, value):
        """Copy in elements from a list.

        Parameters
        ==========

        key : slice
            The section of this matrix to replace.
        value : iterable
            The iterable to copy values from.

        Examples
        ========

        >>> from sympy.matrices import eye
        >>> I = eye(3)
        >>> I[:2, 0] = [1, 2] # col
        >>> I
        Matrix([
        [1, 0, 0],
        [2, 1, 0],
        [0, 0, 1]])
        >>> I[1, :2] = [[3, 4]]
        >>> I
        Matrix([
        [1, 0, 0],
        [3, 4, 0],
        [0, 0, 1]])

        See Also
        ========

        copyin_matrix
        """
        if not is_sequence(value):
            raise TypeError("`value` must be an ordered iterable, not %s." % type(value))
        return self.copyin_matrix(key, Matrix(value))

    def copyin_matrix(self, key, value):
        """Copy in values from a matrix into the given bounds.

        Parameters
        ==========

        key : slice
            The section of this matrix to replace.
        value : Matrix
            The matrix to copy values from.

        Examples
        ========

        >>> from sympy.matrices import Matrix, eye
        >>> M = Matrix([[0, 1], [2, 3], [4, 5]])
        >>> I = eye(3)
        >>> I[:3, :2] = M
        >>> I
        Matrix([
        [0, 1, 0],
        [2, 3, 0],
        [4, 5, 1]])
        >>> I[0, 1] = M
        >>> I
        Matrix([
        [0, 0, 1],
        [2, 2, 3],
        [4, 4, 5]])

        See Also
        ========

        copyin_list
        """
        rlo, rhi, clo, chi = self.key2bounds(key)
        shape = value.shape
        dr, dc = rhi - rlo, chi - clo
        if shape != (dr, dc):
            raise ShapeError(filldedent("The Matrix `value` doesn't have the "
                                        "same dimensions "
                                        "as the in sub-Matrix given by `key`."))

        for i in range(value.rows):
            for j in range(value.cols):
                self[i + rlo, j + clo] = value[i, j]

    def fill(self, value):
        """Fill the matrix with the scalar value.

        See Also
        ========

        zeros
        ones
        """
        self._mat = [value]*len(self)

    def row_del(self, i):
        """Delete the given row.

        Examples
        ========

        >>> from sympy.matrices import eye
        >>> M = eye(3)
        >>> M.row_del(1)
        >>> M
        Matrix([
        [1, 0, 0],
        [0, 0, 1]])

        See Also
        ========

        row
        col_del
        """
        if i < -self.rows or i >= self.rows:
            raise IndexError("Index out of range: 'i = %s', valid -%s <= i"
                             " < %s" % (i, self.rows, self.rows))
        if i < 0:
            i += self.rows
        del self._mat[i*self.cols:(i+1)*self.cols]
        self.rows -= 1

    def row_op(self, i, f):
        """In-place operation on row ``i`` using two-arg functor whose args are
        interpreted as ``(self[i, j], j)``.

        Examples
        ========

        >>> from sympy.matrices import eye
        >>> M = eye(3)
        >>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M
        Matrix([
        [1, 0, 0],
        [2, 1, 0],
        [0, 0, 1]])

        See Also
        ========
        row
        zip_row_op
        col_op

        """
        i0 = i*self.cols
        ri = self._mat[i0: i0 + self.cols]
        self._mat[i0: i0 + self.cols] = [f(x, j) for x, j in zip(ri, list(range(self.cols)))]

    def row_swap(self, i, j):
        """Swap the two given rows of the matrix in-place.

        Examples
        ========

        >>> from sympy.matrices import Matrix
        >>> M = Matrix([[0, 1], [1, 0]])
        >>> M
        Matrix([
        [0, 1],
        [1, 0]])
        >>> M.row_swap(0, 1)
        >>> M
        Matrix([
        [1, 0],
        [0, 1]])

        See Also
        ========

        row
        col_swap
        """
        for k in range(0, self.cols):
            self[i, k], self[j, k] = self[j, k], self[i, k]

    def simplify(self, **kwargs):
        """Applies simplify to the elements of a matrix in place.

        This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))

        See Also
        ========

        sympy.simplify.simplify.simplify
        """
        for i in range(len(self._mat)):
            self._mat[i] = _simplify(self._mat[i], **kwargs)

    def zip_row_op(self, i, k, f):
        """In-place operation on row ``i`` using two-arg functor whose args are
        interpreted as ``(self[i, j], self[k, j])``.

        Examples
        ========

        >>> from sympy.matrices import eye
        >>> M = eye(3)
        >>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M
        Matrix([
        [1, 0, 0],
        [2, 1, 0],
        [0, 0, 1]])

        See Also
        ========
        row
        row_op
        col_op

        """
        i0 = i*self.cols
        k0 = k*self.cols

        ri = self._mat[i0: i0 + self.cols]
        rk = self._mat[k0: k0 + self.cols]

        self._mat[i0: i0 + self.cols] = [f(x, y) for x, y in zip(ri, rk)]

    # Utility functions

MutableMatrix = Matrix = MutableDenseMatrix

###########
# Numpy Utility Functions:
# list2numpy, matrix2numpy, symmarray, rot_axis[123]
###########


def list2numpy(l, dtype=object):  # pragma: no cover
    """Converts python list of SymPy expressions to a NumPy array.

    See Also
    ========

    matrix2numpy
    """
    from numpy import empty
    a = empty(len(l), dtype)
    for i, s in enumerate(l):
        a[i] = s
    return a


def matrix2numpy(m, dtype=object):  # pragma: no cover
    """Converts SymPy's matrix to a NumPy array.

    See Also
    ========

    list2numpy
    """
    from numpy import empty
    a = empty(m.shape, dtype)
    for i in range(m.rows):
        for j in range(m.cols):
            a[i, j] = m[i, j]
    return a


def rot_axis3(theta):
    """Returns a rotation matrix for a rotation of theta (in radians) about
    the 3-axis.

    Examples
    ========

    >>> from sympy import pi
    >>> from sympy.matrices import rot_axis3

    A rotation of pi/3 (60 degrees):

    >>> theta = pi/3
    >>> rot_axis3(theta)
    Matrix([
    [       1/2, sqrt(3)/2, 0],
    [-sqrt(3)/2,       1/2, 0],
    [         0,         0, 1]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_axis3(pi/2)
    Matrix([
    [ 0, 1, 0],
    [-1, 0, 0],
    [ 0, 0, 1]])

    See Also
    ========

    rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis
    rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis
    """
    ct = cos(theta)
    st = sin(theta)
    lil = ((ct, st, 0),
           (-st, ct, 0),
           (0, 0, 1))
    return Matrix(lil)


def rot_axis2(theta):
    """Returns a rotation matrix for a rotation of theta (in radians) about
    the 2-axis.

    Examples
    ========

    >>> from sympy import pi
    >>> from sympy.matrices import rot_axis2

    A rotation of pi/3 (60 degrees):

    >>> theta = pi/3
    >>> rot_axis2(theta)
    Matrix([
    [      1/2, 0, -sqrt(3)/2],
    [        0, 1,          0],
    [sqrt(3)/2, 0,        1/2]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_axis2(pi/2)
    Matrix([
    [0, 0, -1],
    [0, 1,  0],
    [1, 0,  0]])

    See Also
    ========

    rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
        about the 1-axis
    rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis
    """
    ct = cos(theta)
    st = sin(theta)
    lil = ((ct, 0, -st),
           (0, 1, 0),
           (st, 0, ct))
    return Matrix(lil)


def rot_axis1(theta):
    """Returns a rotation matrix for a rotation of theta (in radians) about
    the 1-axis.

    Examples
    ========

    >>> from sympy import pi
    >>> from sympy.matrices import rot_axis1

    A rotation of pi/3 (60 degrees):

    >>> theta = pi/3
    >>> rot_axis1(theta)
    Matrix([
    [1,          0,         0],
    [0,        1/2, sqrt(3)/2],
    [0, -sqrt(3)/2,       1/2]])

    If we rotate by pi/2 (90 degrees):

    >>> rot_axis1(pi/2)
    Matrix([
    [1,  0, 0],
    [0,  0, 1],
    [0, -1, 0]])

    See Also
    ========

    rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
        about the 2-axis
    rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
        about the 3-axis
    """
    ct = cos(theta)
    st = sin(theta)
    lil = ((1, 0, 0),
           (0, ct, st),
           (0, -st, ct))
    return Matrix(lil)


@doctest_depends_on(modules=('numpy',))
def symarray(prefix, shape, **kwargs):  # pragma: no cover
    r"""Create a numpy ndarray of symbols (as an object array).

    The created symbols are named ``prefix_i1_i2_``...  You should thus provide a
    non-empty prefix if you want your symbols to be unique for different output
    arrays, as SymPy symbols with identical names are the same object.

    Parameters
    ----------

    prefix : string
      A prefix prepended to the name of every symbol.

    shape : int or tuple
      Shape of the created array.  If an int, the array is one-dimensional; for
      more than one dimension the shape must be a tuple.

    \*\*kwargs : dict
      keyword arguments passed on to Symbol

    Examples
    ========
    These doctests require numpy.

    >>> from sympy import symarray
    >>> symarray('', 3)
    [_0 _1 _2]

    If you want multiple symarrays to contain distinct symbols, you *must*
    provide unique prefixes:

    >>> a = symarray('', 3)
    >>> b = symarray('', 3)
    >>> a[0] == b[0]
    True
    >>> a = symarray('a', 3)
    >>> b = symarray('b', 3)
    >>> a[0] == b[0]
    False

    Creating symarrays with a prefix:

    >>> symarray('a', 3)
    [a_0 a_1 a_2]

    For more than one dimension, the shape must be given as a tuple:

    >>> symarray('a', (2, 3))
    [[a_0_0 a_0_1 a_0_2]
     [a_1_0 a_1_1 a_1_2]]
    >>> symarray('a', (2, 3, 2))
    [[[a_0_0_0 a_0_0_1]
      [a_0_1_0 a_0_1_1]
      [a_0_2_0 a_0_2_1]]
    <BLANKLINE>
     [[a_1_0_0 a_1_0_1]
      [a_1_1_0 a_1_1_1]
      [a_1_2_0 a_1_2_1]]]

    For setting assumptions of the underlying Symbols:

    >>> [s.is_real for s in symarray('a', 2, real=True)]
    [True, True]
    """
    from numpy import empty, ndindex
    arr = empty(shape, dtype=object)
    for index in ndindex(shape):
        arr[index] = Symbol('%s_%s' % (prefix, '_'.join(map(str, index))),
                            **kwargs)
    return arr


###############
# Functions
###############

def casoratian(seqs, n, zero=True):
    """Given linear difference operator L of order 'k' and homogeneous
       equation Ly = 0 we want to compute kernel of L, which is a set
       of 'k' sequences: a(n), b(n), ... z(n).

       Solutions of L are linearly independent iff their Casoratian,
       denoted as C(a, b, ..., z), do not vanish for n = 0.

       Casoratian is defined by k x k determinant::

                  +  a(n)     b(n)     . . . z(n)     +
                  |  a(n+1)   b(n+1)   . . . z(n+1)   |
                  |    .         .     .        .     |
                  |    .         .       .      .     |
                  |    .         .         .    .     |
                  +  a(n+k-1) b(n+k-1) . . . z(n+k-1) +

       It proves very useful in rsolve_hyper() where it is applied
       to a generating set of a recurrence to factor out linearly
       dependent solutions and return a basis:

       >>> from sympy import Symbol, casoratian, factorial
       >>> n = Symbol('n', integer=True)

       Exponential and factorial are linearly independent:

       >>> casoratian([2**n, factorial(n)], n) != 0
       True

    """

    seqs = list(map(sympify, seqs))

    if not zero:
        f = lambda i, j: seqs[j].subs(n, n + i)
    else:
        f = lambda i, j: seqs[j].subs(n, i)

    k = len(seqs)

    return Matrix(k, k, f).det()


def eye(*args, **kwargs):
    """Create square identity matrix n x n

    See Also
    ========

    diag
    zeros
    ones
    """

    return Matrix.eye(*args, **kwargs)


def diag(*values, **kwargs):
    """Returns a matrix with the provided values placed on the
    diagonal. If non-square matrices are included, they will
    produce a block-diagonal matrix.

    Examples
    ========

    This version of diag is a thin wrapper to Matrix.diag that differs
    in that it treats all lists like matrices -- even when a single list
    is given. If this is not desired, either put a `*` before the list or
    set `unpack=True`.

    >>> from sympy import diag

    >>> diag([1, 2, 3], unpack=True)  # = diag(1,2,3) or diag(*[1,2,3])
    Matrix([
    [1, 0, 0],
    [0, 2, 0],
    [0, 0, 3]])

    >>> diag([1, 2, 3])  # a column vector
    Matrix([
    [1],
    [2],
    [3]])

    See Also
    ========
    .common.MatrixCommon.eye
    .common.MatrixCommon.diagonal - to extract a diagonal
    .common.MatrixCommon.diag
    .expressions.blockmatrix.BlockMatrix
    """
    # Extract any setting so we don't duplicate keywords sent
    # as named parameters:
    kw = kwargs.copy()
    strict = kw.pop('strict', True)  # lists will be converted to Matrices
    unpack = kw.pop('unpack', False)
    return Matrix.diag(*values, strict=strict, unpack=unpack, **kw)


def GramSchmidt(vlist, orthonormal=False):
    """Apply the Gram-Schmidt process to a set of vectors.

    Parameters
    ==========

    vlist : List of Matrix
        Vectors to be orthogonalized for.

    orthonormal : Bool, optional
        If true, return an orthonormal basis.

    Returns
    =======

    vlist : List of Matrix
        Orthogonalized vectors

    Notes
    =====

    This routine is mostly duplicate from ``Matrix.orthogonalize``,
    except for some difference that this always raises error when
    linearly dependent vectors are found, and the keyword ``normalize``
    has been named as ``orthonormal`` in this function.

    See Also
    ========

    .matrices.MatrixSubspaces.orthogonalize

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
    """
    return MutableDenseMatrix.orthogonalize(
        *vlist, normalize=orthonormal, rankcheck=True
    )


def hessian(f, varlist, constraints=[]):
    """Compute Hessian matrix for a function f wrt parameters in varlist
    which may be given as a sequence or a row/column vector. A list of
    constraints may optionally be given.

    Examples
    ========

    >>> from sympy import Function, hessian, pprint
    >>> from sympy.abc import x, y
    >>> f = Function('f')(x, y)
    >>> g1 = Function('g')(x, y)
    >>> g2 = x**2 + 3*y
    >>> pprint(hessian(f, (x, y), [g1, g2]))
    [                   d               d            ]
    [     0        0    --(g(x, y))     --(g(x, y))  ]
    [                   dx              dy           ]
    [                                                ]
    [     0        0        2*x              3       ]
    [                                                ]
    [                     2               2          ]
    [d                   d               d           ]
    [--(g(x, y))  2*x   ---(f(x, y))   -----(f(x, y))]
    [dx                   2            dy dx         ]
    [                   dx                           ]
    [                                                ]
    [                     2               2          ]
    [d                   d               d           ]
    [--(g(x, y))   3   -----(f(x, y))   ---(f(x, y)) ]
    [dy                dy dx              2          ]
    [                                   dy           ]

    References
    ==========

    https://en.wikipedia.org/wiki/Hessian_matrix

    See Also
    ========

    sympy.matrices.matrices.MatrixCalculus.jacobian
    wronskian
    """
    # f is the expression representing a function f, return regular matrix
    if isinstance(varlist, MatrixBase):
        if 1 not in varlist.shape:
            raise ShapeError("`varlist` must be a column or row vector.")
        if varlist.cols == 1:
            varlist = varlist.T
        varlist = varlist.tolist()[0]
    if is_sequence(varlist):
        n = len(varlist)
        if not n:
            raise ShapeError("`len(varlist)` must not be zero.")
    else:
        raise ValueError("Improper variable list in hessian function")
    if not getattr(f, 'diff'):
        # check differentiability
        raise ValueError("Function `f` (%s) is not differentiable" % f)
    m = len(constraints)
    N = m + n
    out = zeros(N)
    for k, g in enumerate(constraints):
        if not getattr(g, 'diff'):
            # check differentiability
            raise ValueError("Function `f` (%s) is not differentiable" % f)
        for i in range(n):
            out[k, i + m] = g.diff(varlist[i])
    for i in range(n):
        for j in range(i, n):
            out[i + m, j + m] = f.diff(varlist[i]).diff(varlist[j])
    for i in range(N):
        for j in range(i + 1, N):
            out[j, i] = out[i, j]
    return out


def jordan_cell(eigenval, n):
    """
    Create a Jordan block:

    Examples
    ========

    >>> from sympy.matrices import jordan_cell
    >>> from sympy.abc import x
    >>> jordan_cell(x, 4)
    Matrix([
    [x, 1, 0, 0],
    [0, x, 1, 0],
    [0, 0, x, 1],
    [0, 0, 0, x]])
    """

    return Matrix.jordan_block(size=n, eigenvalue=eigenval)


def matrix_multiply_elementwise(A, B):
    """Return the Hadamard product (elementwise product) of A and B

    >>> from sympy.matrices import matrix_multiply_elementwise
    >>> from sympy.matrices import Matrix
    >>> A = Matrix([[0, 1, 2], [3, 4, 5]])
    >>> B = Matrix([[1, 10, 100], [100, 10, 1]])
    >>> matrix_multiply_elementwise(A, B)
    Matrix([
    [  0, 10, 200],
    [300, 40,   5]])

    See Also
    ========

    sympy.matrices.common.MatrixCommon.__mul__
    """
    return A.multiply_elementwise(B)


def ones(*args, **kwargs):
    """Returns a matrix of ones with ``rows`` rows and ``cols`` columns;
    if ``cols`` is omitted a square matrix will be returned.

    See Also
    ========

    zeros
    eye
    diag
    """

    if 'c' in kwargs:
        kwargs['cols'] = kwargs.pop('c')

    return Matrix.ones(*args, **kwargs)


def randMatrix(r, c=None, min=0, max=99, seed=None, symmetric=False,
               percent=100, prng=None):
    """Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted
    the matrix will be square. If ``symmetric`` is True the matrix must be
    square. If ``percent`` is less than 100 then only approximately the given
    percentage of elements will be non-zero.

    The pseudo-random number generator used to generate matrix is chosen in the
    following way.

    * If ``prng`` is supplied, it will be used as random number generator.
      It should be an instance of ``random.Random``, or at least have
      ``randint`` and ``shuffle`` methods with same signatures.
    * if ``prng`` is not supplied but ``seed`` is supplied, then new
      ``random.Random`` with given ``seed`` will be created;
    * otherwise, a new ``random.Random`` with default seed will be used.

    Examples
    ========

    >>> from sympy.matrices import randMatrix
    >>> randMatrix(3) # doctest:+SKIP
    [25, 45, 27]
    [44, 54,  9]
    [23, 96, 46]
    >>> randMatrix(3, 2) # doctest:+SKIP
    [87, 29]
    [23, 37]
    [90, 26]
    >>> randMatrix(3, 3, 0, 2) # doctest:+SKIP
    [0, 2, 0]
    [2, 0, 1]
    [0, 0, 1]
    >>> randMatrix(3, symmetric=True) # doctest:+SKIP
    [85, 26, 29]
    [26, 71, 43]
    [29, 43, 57]
    >>> A = randMatrix(3, seed=1)
    >>> B = randMatrix(3, seed=2)
    >>> A == B
    False
    >>> A == randMatrix(3, seed=1)
    True
    >>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP
    [77, 70,  0],
    [70,  0,  0],
    [ 0,  0, 88]
    """
    if c is None:
        c = r
    # Note that ``Random()`` is equivalent to ``Random(None)``
    prng = prng or random.Random(seed)

    if not symmetric:
        m = Matrix._new(r, c, lambda i, j: prng.randint(min, max))
        if percent == 100:
            return m
        z = int(r*c*(100 - percent) // 100)
        m._mat[:z] = [S.Zero]*z
        prng.shuffle(m._mat)

        return m

    # Symmetric case
    if r != c:
        raise ValueError('For symmetric matrices, r must equal c, but %i != %i' % (r, c))
    m = zeros(r)
    ij = [(i, j) for i in range(r) for j in range(i, r)]
    if percent != 100:
        ij = prng.sample(ij, int(len(ij)*percent // 100))

    for i, j in ij:
        value = prng.randint(min, max)
        m[i, j] = m[j, i] = value
    return m


def wronskian(functions, var, method='bareiss'):
    """
    Compute Wronskian for [] of functions

    ::

                         | f1       f2        ...   fn      |
                         | f1'      f2'       ...   fn'     |
                         |  .        .        .      .      |
        W(f1, ..., fn) = |  .        .         .     .      |
                         |  .        .          .    .      |
                         |  (n)      (n)            (n)     |
                         | D   (f1) D   (f2)  ...  D   (fn) |

    see: https://en.wikipedia.org/wiki/Wronskian

    See Also
    ========

    sympy.matrices.matrices.MatrixCalculus.jacobian
    hessian
    """

    for index in range(0, len(functions)):
        functions[index] = sympify(functions[index])
    n = len(functions)
    if n == 0:
        return 1
    W = Matrix(n, n, lambda i, j: functions[i].diff(var, j))
    return W.det(method)


def zeros(*args, **kwargs):
    """Returns a matrix of zeros with ``rows`` rows and ``cols`` columns;
    if ``cols`` is omitted a square matrix will be returned.

    See Also
    ========

    ones
    eye
    diag
    """

    if 'c' in kwargs:
        kwargs['cols'] = kwargs.pop('c')

    return Matrix.zeros(*args, **kwargs)