pygromos.simulations.hpc_queuing.job_scheduling package

Subpackages

Submodules

pygromos.simulations.hpc_queuing.job_scheduling.file_management module

This module is doing all the post simulation file juggeling needed for gromos. CURRENTLY OLD DON”T USE

pygromos.simulations.hpc_queuing.job_scheduling.file_management._thread_worker_cat_trc(job: int, replicaID_range: List[int], trc_files: Dict[int, List[str]], out_prefix: str, topology_path: str, out_trcs: dict, dt: float, time: float = 0, verbose: bool = False, boundary_conditions: str = 'r cog', include_all: bool = False)[source]

This thread worker_scripts concatenates all .trc files of one replica into one file.

Parameters
  • job (rank of this thread)

  • replicaID_range (x_range - list of all)

  • trc_files (Dict[int, List[str]]) – Dictionary containing all replicas, with list of all trc files concerning one trc.

  • out_prefix (str) – output prefix

  • verbose (bool) – verbosity?

Return type

None

pygromos.simulations.hpc_queuing.job_scheduling.file_management.compress_files(in_paths: List[str], n_processes: int = 1) List[str][source]

compress a list of files

Parameters
  • in_paths (List[str])

  • n_processes (int) – how many processes can be used in parallel?

Returns

outpaths

Return type

List[str]

pygromos.simulations.hpc_queuing.job_scheduling.file_management.find_and_unarchive_tar_files(trc_files: List[str], verbose: bool = False)[source]
pygromos.simulations.hpc_queuing.job_scheduling.file_management.find_header(path: str) int[source]
pygromos.simulations.hpc_queuing.job_scheduling.file_management.gather_simulation_file_paths(in_folder: str, filePrefix: str = '', fileSuffixes: Union[str, List[str]] = ['.tre', '.tre.tar.gz'], files_per_folder: int = 1, verbose: bool = False) List[str][source]
pygromos.simulations.hpc_queuing.job_scheduling.file_management.gather_simulation_replica_file_paths(in_folder: str, replicas: int, filePrefix: str = '', fileSuffixes: Union[str, List[str]] = ['.tre', '.tre.tar.gz'], verbose: bool = False, finalNumberingSort=False) Dict[int, List[str]][source]

gather_replica_file_paths

Finds all trajectory paths in a simulation folder and sorts them by replica.

Parameters
  • in_folder (str) – folder, containing the files

  • replicas (int) – Number of replicas

  • filePrefix (str, optional) – str prefix the desired files

  • fileSuffixes (str, optional) – str suffix of the desired files

  • verbose (bool) – toggle verbosity

pygromos.simulations.hpc_queuing.job_scheduling.file_management.parse_csv_energy_trajectories(in_folder: str, ene_trajs_prefix: str, verbose: bool = False) List[pandas.core.frame.DataFrame][source]

searches a directory and loads energy eds csvs as pandas dataframes.

Parameters
  • in_folder (str) – folder with energy_traj - csvs

  • ene_trajs_prefix (str) – prefix name

  • verbose (bool) – loud?

Returns

return a list with pandas data frames containing all energy infos.

Return type

List[pd.DataFrame]

pygromos.simulations.hpc_queuing.job_scheduling.file_management.parse_csv_energy_trajectory(in_ene_traj_path: str, verbose: bool = False) pandas.core.frame.DataFrame[source]

parse_one ene_ana csv

Parameters
  • in_ene_traj_path (str) – path to input file

  • verbose (bool) – loud?

Returns

return a pandas data frame containing all energies

Return type

pd.DataFrame

pygromos.simulations.hpc_queuing.job_scheduling.file_management.project_concatenation(in_folder: str, in_topology_path: str, in_imd: str, num_replicas: int, control_dict: Dict[str, bool], out_folder: str, in_ene_ana_lib_path: str, out_file_prefix: str = 'test', fit_traj_to_mol: int = 1, starting_time: float = 0, include_water_in_trc=True, additional_properties: Union[Tuple[str], List[str]] = ('solvtemp2', 'totdisres'), n_processes: int = 1, gromosPP_bin_dir: Optional[str] = None, verbose: bool = False, nofinal=False, boundary_conditions: str = 'r cog') dict[source]
pygromos.simulations.hpc_queuing.job_scheduling.file_management.thread_worker_concat_repdat(job: int, repdat_file_out_path: str, repdat_file_paths: Union[str, List[str]], verbose: bool = False) str[source]
pygromos.simulations.hpc_queuing.job_scheduling.file_management.thread_worker_isolate_energies(in_en_file_paths: str, out_folder: str, properties: List[str], replicas: List[int], in_ene_ana_lib: str, gromosPP_path: str, out_prefix: str = '', tre_prefix: str = '', time=None, dt=None, job: int = - 1, verbose=True) List[str][source]
isolate_properties_from_tre

This func uses Ene Ana from gromos to isolate potentials from out_tre Files in in_folder generated by reeds.

Parameters
  • in_en_file_paths (str) – path, in which the input tre_folders are situated.

  • out_folder (str) – output folder, where to write the energy .csvs

  • properties (List[str]) – potentials to isolate from the .out_tre Files

  • replicas (int) – number of replicas, that should be found

  • in_ene_ana_lib (str) – path to the ene_ana lib, encoding the out_tre Files

  • gromosPP_path (str) – path to the ene_ana lib, encoding the out_tre Files

  • out_prefix (str, optional)

  • tre_prefix (str, optional)

  • verbose (bool, optional)

Returns

return list of result Files.

Return type

List[str]

pygromos.simulations.hpc_queuing.job_scheduling.module_functions module

pygromos.simulations.hpc_queuing.job_scheduling.module_functions.write_job_script(out_script_path: str, target_function: callable, variable_dict: dict, python_cmd: str = 'python3', verbose: bool = False) str[source]

Module contents